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1. OVERVIEW

The study reported here was conducted in response to a contract that
set the following objective: "Utilizing available climatolegical cloud .
property data bases from a representative selection of climates, detor-
mine the information content in a series of simulated upper air in situ

measurements of cloud presence along a path to provide for estimates o

e ey

mesoscale cloud cover, tops, and bases from the carth's surtface to 8 km
above ground level."
The general context of the problem is a battleficld. The specific

scenario is a tactical target area 50 km across. The c¢loud probe is a

simple binary sensor, capable of reporting only "I am in cloud” or "1 um

in clear air." Tts reports are telemetered back to a ground station at

the rate of 1 Hz. The sensor is carried aboard an automatically pilotced
vehicle {(APV) that is limited in range and speed but is capable of exe-
cuting a prescribed flight path. 1ts position is known at all times.

Figure 1.1 illustrates the three general classes of sampling pat-

terns that were examined, In the first, the target volume is :ampled
through a succession of horizontal patterns that are stepped in altitude,
each horizontal sample counsisting of measurements taken dalong a single
pass. The second pattern is identical, except that the horizontal sample
is now taken along a flight path that is more than a single pass. The
third pattern consists of alternate ascents and descents in a tight spi-
ral, the result being that each level is sampled in a pattern of widely
separated points.

To evaluate the "sampling accuracy" of these patterns, i.c¢., the ac-
curacy of inferences based on the samples, we adopted two independent ap-
proaches. The experimental approach was founded on a set of 132 actual
cloud fields as obscrved from a Geostationary Operational Environment.al
Satellite (GOES). Computer programs cnabled simulated sampling pattoerns
to be flown through these tields. Analysis of these led to eostimates ot
the sampling accuracy of the various patterns. Details of the basic cloud
fields and their collection arc described in Appendix A.

In parallel, theoretical estimates of sampling accuracy were derived
from the binomial distribution. This distribution is known to depict ac-
curately the statistical propertic: of o collective of binary samples,

which is what a set of our yes/no cloud measurements comprises.  The sole
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compl ication is that the binomial distribution is valid only for collec-

tives of independent samples, whercas the successive and nearby point

measurements in our scenario are assuredly not independent. In order to

retain use of the binomial distribution, we introduce the concept of an “
"independence traction," which reduces the N actual points of a samle

to a statistically euuivalent sample consisting of N' independont voiunts,

Appendix R elaborates on the use of the binomial distribution for
our purvose, while Appendix C discusses evaluation of the independence
fraction.

Besides the broad objective cited above, the contract Statement of
work (SOW) asks that several vointed cuestions be answered for the case
that the sampling runs are straight tine horizontal naths. Then, the
Statement asks whether the best estimates of cloud parameters are achieved

through this sampling mode or whether some alternate trajectorv could

significantly reduce uncertainties in these cstimates.

In Section 2 of this report, the accuracy of sampling in horizon-
tal passes is evaluated, and its dependence on the lenath of the pass
established. There also, the specific questions of the SOW are addressed
one by one. i

Section 3 then examines the accuracy of samolina in horizontal pat-
terns other than straight passes and finds that, for a given samplinag
lenath, certain patterns are more effective than a straiaht irass.

Section 4 treats the last of the 3 classes of samplinag strateav —
the "vertical" flight vattern that produces a confiaquration of isolated
point samples at each of the horizontal levels. Here it is found that,
in terms of the accuracy with which the areal cloud fraction can be in-
ferred, a pvattern of relatively few, well-positioned points is the cquiv-
alent of a rather long sampling path. This is consistent with the esti-
mate of independence fraction ot a "continuous" horizontal sample, which L
suqgests that the information content of a 10-km segment is no more than
that of its two end points.

Finally, in Scction 5 the best of horizontal and vertical sampling
patterns are competed in terms of time and fucl required for eoxccution,
1t is found that, for a given accuracy, the best horizontal strategy

costs almost twice as much as the best vertical strateay. Clearly, the }

waste of time and fuel resulting from the redundancy of information in




horizontal sampling more than compeusates or the higher rate o: fuel

consumption entailed 1n the "pogo-stick™ flight path of the vertical pat-
tern.

Besides the atorementioned advantage of the vertical strategy, it is
vastly superior to the horizontal with respect to tixing cloud base and
top and, consequently, 1in recoynizing the existence o! discretce layers.
This latter capability makes possible a confident answer to an important
question that can only be guessed at from horizontal samples — namely,
what is the overall cloud fraction when more than a single layer is pres-
ent 2

The contract SOW invited us, first, to work the overall problem as-
suming a horizontally homogeneous cloud field and, then, to consider and
evaluate the effects of inhomogeneity. However, neither our experimental
approach nor the theoretical was made simpler by an assumption of homo-
geneitv. Jonsequently, the general case was attacked from the outset,
and the conclusions are valid without regard to deqrece of homoygeneity.
Nevertheless, Appendix D touches on the academic issue of sampling a ho-
mogeneous field and, additionally, discusses a realizable situation that
represents, in our view, the most troublesome form of inhomogeneity.

Sampling efficiency is found to depend on the climatological fre-
quency of c¢loud amount. What is relevant is cloudiness at the level
being sampled, not total cloudiness. It is the latter, unfortunately,
that is treated in standard climatological summaries. 7To generate the
specialized statistics required for our purpose, a model developed re-
cently by [. I. Gringorten of the Air Force Geophysics Laboratory (AFGL)
was employed.

Throughout the study, whether the sampling pattern is horizontal or
vertical, what is sampled is the "projected cloud fraction" or "earth
cover," in distinction to "sky cover," which is the {ractional coverage
as seen from a point on the ground. However the SOW poses its questions
in terms of cloud cover. Hence, a means of converting from cloud frac-
tion to cloud cover is required and is dealt with in Section 6. There
it is tound that the differences detectable between the two measures are
small relative to the scatter in our data, and we conclude that in oper-
ational practice it is better to assume that sky cover is identical to

earth cover.

POV




As 1s commonly the case, some ot the intermediate result s achicvesd
during the course of this study were not directly used in the tinal re-
sults. Nevertheless, a few of these incidental results are russibly o
general interest and are, theretore, described in the two final append: -

ciles: E and V¥,




v SAMPLING IN HOKIZONTAL PASSES

2.1 Accuracy of Cloud Amount Estimate vs. Length of sampling Path.

The first of the specific problems posed by the contract Statement
o Work (SOW) was: "Assume a straight line vehicle trajectory at a
given level through a cloud deck and determine the trade-offs between
pathy length and uncertainty estimates in the calculation of cloud cover."

We approached this question both exyperimentally and theoretically.
2.1.1 The Experimental Answer.

The experimental basis of the entire study is 132 cloud fields ob-
served from a NOAA GOES satellite (National Oceanic and Atmospheric Ad-
ministration, Geostationary Operational Environmental Satellite). Details
of this data base are described in Appendix A. Out of the 132 cases, 50
were randomly selected and set aside as independent data to be used in
testing any conclusions based on the “development sample" of 82 cases.

Each of the basic cloud fields is a rectangular array of binary
pixels — i.e., picture eclements denoting only c¢loud or no-cloud — cover-
ing an area 100x100 km on the earth's surface. The number of rows and
columns in the array varies with distance from the sub-satellite point,
but the average spacing in our development sample is 1.23 km in the N-S
direction and 0.82 km in the E-W.

To answer this first guestion of the SOW, passes of various lengths
from 10 to 100 km were simulated in the observed cloud fields. The pro-
cedure will be illustrated for the case of 60-3im passes in a cloud field
centeored over south central Tennessee on December 29, 1980 and observed
at local noon. On this occasion the 100x100 km cloud array consisted of
84 rows and 125 columns, and the cloud fraction over the entire array,
denoted NA, was 0.444. Along each of the 209 lines of the array ({(rows
and columns together) 3 60-km passes were laid out symmetrically. The
cload traction, NI, for each of these 627 simulated passes was evaluated,
and a treguency distribution constructed. The result is shown in Table
2.1, From this distribution an accuracy index, denoted P(.1), was eval-
uated, P(.1) is defined as the fraction of the 627 values of NL falling
within 0.1 of 0.4 (NA rounded to nearest tenth). In the present case

P(.1) = ,530.




TABLE 2.1 FREQUENCY DISTRIBUTION OF PASS CLOUD FRACTION, NI.

NL (tenth) 0 1 2 3 4 5 o 7 8 9 10
Frequency (%) 1.2 2.8 7.3 11.0 18,9 23.1 17.5 11.1 5.1 1.5 0

The development sample of cloud fields yielded 82 such values o
(.1). These were grouped according to value of NA and then averaged.
The sample standard deviation was also evaluated for each class con-
taining more than 6 values of P({.,1).

All told, this procedure was used to generate statistics tor
simulated sampling passes of & lengths: 10, 20, 40, 60, 80, and 100 km.

The results are shown in Table 2.2. The strong dependence of P(.1) on

NA Is strikingly evident in Figure 2.1,

TABLE 2.2 MEAN SAMPLING ACCURACY, P(.l), AND STANDARD DEVIATION, O,
AS A FUNCTION OF PASS LENGTH AND AREAL CLOUD
FRACTION, NA.

_10 km _20 km, 40 km 60 km, 80 km 100 _km
(ted Bl 0 EBELL o 20D o RO EBLLDO RLLDJ !
0 .9 - .97 - .96 - .98 - .99 - .99 -
1 .88 .03 .88 .04 .90 .04 .92 .03 .94 .03 .95 .04
2 .24 .15 .35 .13 .47 .10 .54 .09 .61 .10 .70 .11
3 .21 .08 .31 .10 .43 .14 .54 .14 .58 .16 .64 .15
4 .17 .08 .25 .08 .35 .11 .45 .14 .53 .17 .61 .17
5 .17 .09 .26 .10 .35 .14 .42 .14 .51 .14 .56 .13
6 .17 .10 .24 .13 .33 .14 .42 .14 .51 .14 .60 .14 i
7 .20 .05 .28 .09 .41 .12 .51 .15 .59 .15 .65 .19
8 .20 .06 .33 .09 .50 .08 .60 .11 .67 .12 .74 .12
9 .85 - .83 - .83 - .84 - .84 - .82 -
10 .99 - .99 - 1.00 - l1.00 - 1.00 - 1.00 -
Unweighted
Mean .46 .52 .59 .66 .7 .75

In view of this dependence, simple averaging ot P'(.1l) across the
values of areal fraction will not producc the correct value of sampling

accuracy that can be expected on average when the particular samplina
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mode is applied on a day-~to-day basis or randomly in time. Instead, the
averaging must be weighted by the climatological frequency of areal c¢loud
fraction at the level being sampled, which, of course, varies with loca- ‘

tion and season. 1If the climatological frequency happens also to be U-

shaped, which is a common situation, the expected sampling accuracy can
be dramatically better than an unweighted average. This is illustrated
in Figure 2.2 which also depicts the trade-off between sampling pass
length and accuracy.

The climatological frequencies used in Figure 2.2 are included in

Table B-4 of Appendix B. The frequencies for Fulda are for cloudiness

in the altitude range 0-3,000 feet, for January, 1200-1400 hours local.
These data were derived by Lund using a technique devised by (;rinqorten.l
Strictly speaking, the Ft. Rucker data used in Figure 2.2 are not ap-
propriate since they relate to total sky cover, not to cloudiness at a
particular level. They were used, nevertheless, in order to demonstrate
the effect of a climatology that is not so strongly U-shaped.

We shall be using P(.1) throughout this report, but cther investi-
gators have employed the standard error of estimate as their figure of
merit for sampling. No simj-le conversion exists between the two mea-
sures, but in Section 4 a relationship between P(.1) and the standard
error of regression will be shown.

Figure 2.2 embodies the desired trade-off between path length and un-

certainty in the estimate of cloud fraction, but several underlying fea-

tures warrant emphasis:

A. The simulated passes were located in almost all possible
positions within the 100x100 km cloud field. Consequently the values
of P(L1) represent the expected accuracy of a pass that is randomly
positioned in the target area. Tn the next section we consider patterns
that are deliberately positioned relative to the target and find some
that are more accurate than random passes of the same length,

B. Tn order to accommodate the longer passes, it was nccessary
to deal here with the entire 100x1N0 km cloud field, rather than a qquad-

rant, which is the size specified for the taryet arca.

1. Gringorten, I. I., 1981: C(Climatic probabilities of the vertical dis-
tribution of cloud cover. AFGL~TN (in press}.
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2.1,2 The Theoretical Answer.

If the airborne c¢loud sensor is sampled at the rate of 1| Hz, a hor-
izontal pass yields a set of point samples separated by less than 50
meters.  Appendix B outlines how the binomial distribution can be uscd
to determine the accuracy with which arecal cloud fraction can boe osti-
mated from the cloud fraction observed on a sct of points. The sole
obstacle to immediate application of this thceory in our scenario is that
the theory calls for mutually independent samples whereas, due to the
spatial coherence ot cloudiness, our closely spaced samples are not at
all likely to be statistically independent.

By-passing this complication for the moment, let us examine how
sampling accuracy, P(.1l), depends on sample size. The data plotted in
Figure 2.3(A) for samples of 5, 10, 15, and 20 independent points were
derived according to the procedure of Appendix B. Just like the experi-
mental values of P(.l), the theoretical values are sensitive to areal
cloud fraction. Hence, Figure 2.3(A) displays averages of P(.1) weighted
by the same climatologies used in the preceding paragraph. Thus, Fig-
ure 2.2 and 'igure 2.3(A) are fully analogous and could be directly com-
pared were it not for the difference in abscissas: "sample length" in
one case, "number of points" in the other.

To rectify this incompatibility we invoke the concept ot "indeten-
dence length" introduced in Appendix . This is the distance of sejar-
ation that is sufficient to insure that cloud samples are statistically
independent. The average value of this length evaluated on our develop-
ment sample of data is 12,33 km. This value is used to convert the sam-
ple size (number of points) in Figure 2.3(A) into an cquivalent lenath
of sampling pass. In Figure 2.3(B) the results ot this conversion are
plotted, together with the points of Figure 2.2.

Figure 2.3(B) offers an extended view of the trade-off between
pass length and sampling accuracy and reveals a compatibility between

the experimental and theoretical values of P
J.1.3 Predictive Value of the Sample Autocorrelation,

Accaording to preoeceding paragraphs, the accuracy of an interred value

ot areal clond fraction depends on the cquivalent number of independont

points in the lincar sample, and this number depends on the "independence
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length." 1t is reasonable to expect that the independence lenath and,
therefore, the intrinsic sampling accuracy vary in value from day to
day. Although the independence length is evaluated empirically in
i Appendix C, it can be formulated theoretically, and the samplc auto-
correlation function plays a key role in this formulation.

This line of reasoning led to an experiment to test whether the
areal cloud fraction can be more accurately determined it both the -l
autocorrelation coefficient of the sampling pass and its cload tract ton
are used as predictors,

Each of the 82 observed cloud fields was subdivided into 50x50 km
quadrants. For each row and each column ot every quadrant, the ¢loud

fraction and the 1-lag autocorrelation, pl, woere evaluated — also, the

areal cloud fraction for the quadrant. The same was done for the full

100x100 km area. Altogether, the result was more than 34,000 palrs of

line and areal cloud fractions, together with values of “l for the line,

These palrs were stratified by value of ol into 4 classes: less than

0.5, 0.5-0.9, greater than 0.9, and all values. For each class ot oy

and for each value of linear cloud fraction, the distribution ot arcal

cloud fraction was determined, along with a variety of statistics. )
Figure 2.4 shows how the mean arecal cloud fraction, NA, varics

with the linear fraction, NL, for the 4 classes of p], Table 2.3 shows

how the average sampling accuracy, P(.1}, varies amonag the classes. In

both instances, the variation with class is no more than might be expoect-

ed as a sampling fluctuation. We conclude, therefore, that the predict-

ability of NA from NL is negligibly enhanced by knowledge of Ul.

2.2 Optimum Number of Levels to Sample. f

The second problem raised by the Statement of Work was: "Determine

the optimum number of levels which the detector should traverse, consis-
tent with restrictions in vehicle range, in order to characterize arcal
cloud coverage."

The crux of the matter heve is to strike the best compromise be-
tween accuracy of cloud amount at each level and assurance that no layer

goes undetected. The former is best gserved by muximizing the pass Jenath

at each level, the latter by maximizing the number of levels samplod.




LOUD FRACTION

ARLAL

o

.
(9]

0

ow >

2

0.2

I'iqure 2.4.

0.3 0.4 0.6 0.7 0.8 0.9 1

LINEAR CLOUD FRACTION

0.5

Areal Cloud Fraction as a Function of Linear Fraction

for various Classes ot the l-Lag Autocorrelation of
the Line Sample,

A. All p

L
5 S < 4

B, .5 Ol L9,

C. ol < .5.

D. p. = .9.

1




TTIATIENG

g 1

E

T . i - e e 4 v AN AR o, =~ i e

TABLE 2.3 MFAN SAMPLING ACCURACY, P(.1), AS A FUNCTION OF LINEAR
CLOUD FRACTION, NL, FOR VARIOUS CLASSES OF THE 1-LAG
AUTOCORRELATION, pl, OF THE LINE SAMPLE.

P(.1)
NL
(tenths) ol< 0.5 0.5 S Dl < 0.9 Dl > 0.9 All pl
0 .66 .63 * .76
1 .66 .71 .60 .68
2 .70 .66 .78 .74
3 .G5 .72 .78 .71
4 .73 .67 .47 .06
5 .69 .59 .65 .61
6 .73 .60 .45 .61
7 .69 .67 .71 .68
8 .63 .65 .76 .65
9 .57 .66 .54 .61
10 .55 .60 * .69
Average .66 .66 .64 .67

In the absence ot foreknowledge as to the types ot clouds likely in
the target area, the best strateqgy is to fly passes no longer than 10 km
and to sample as many levels as possible, uniformly distributed within the
altitude range of prime operational interest. The reasons are the fol-
lowing:

A. As shown in Figure 2.2, sampling accuracy improves only
slowly with pass length, particularly in climates like that of Fulda.

B. An inference of areal cloud coverage is damaged far morce
by failure to detect a layer altogether than by a degraded estimate ot
its amount.

C. The frequency of cloud occurrence is typically a weak and
gquasi-monotonic function of altitude.

An attempt could be made to guantify this solution, but we chose not
to because we doubt that there is a "good" answer for the case of horizon-
al sampling and, more important, because the problem does not even exist

for a distinctly superior sampling mode that is treated in Sections 1 and 5.
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2.3 Uncertainty of Tops and Bases.

The third specific question posed by the Statement of Work was:
"Determine the uncertainty in the estimation of tops and bases given .
measurements on a straight line trajectory at multiple flight levels."
In the given circumstances, the uncertainty in estimate of the
top/base of a cloud layer is half the distance between sampling levels.
A cloud top/base would be declared to exist whenever cloud is detected
on one pass but not on the next higher/lower pass. To first approxi-
mation, the median position for the boundary is the midpoint between
the two sampling levels.
A pedantic refinement of this estimate would take account of the
fact that whereas the existence of cloud at the one level is 100% cer-
tain, it is less than dead certain that the other level is clear. The
degree of uncertainty depends on the length of sampling pass and can be
estimated by means described in Section 2.1. This would lead to biasing
the median estimate of the boundary altitude toward the level at which
no cloud was detected.
Again, it is fortunate that this problem evaporates in the alter- !

native sampling strategy recommended in Section 5.

|




3. SAMPLING IN HORIZONTAL PATTERNS

The averages of sampling accuracy presented in Section 2.1.1 are
based on all possible locations of passes, which include, for the
100x100 km area, passes that are as remote as 50 km from the "target."
Consequently, as previously noted, the findings of that section char-
acterize the performance expected of sampling on horizontal passes
that are randomly positioned in the target area. It is reasonable to
expect that centrally located passes might be more representative of
the area. Also, for a fixed allocation of fuel to sample a level, it
might be more efficient to spend this on several short passes rather
than in a single long pass across the area. With such ghouqhts in
mind, we designed a series of experiments on the observed cloud fields
to test whether sampling in a prescribed horizontal pattern is more
efficient than the same distance of sampling in a pass that is randomly
located in the target area.

The patterns tested are shown in Figure 3.1. The results to be
quoted for configurations #1, 2, and 3 combine the row-patterns illus-
trated here and the analogous column-patterns which are not shown. 1In
all cases the area sampled is 50x50 km. The sampling length is 100 km
for all patterns except for #1 whose length is 150 km. Except for the
closed pattern of #5, the total flight path would have to be longer
than the sampling path in order to link the passes. In configurations
#1 and #3 the sampling passes subdivide the area respectively into 4
and 3 equal parts. #2 is an example of "equal-area" sampling, which
will also play a key role in Section 4. To construct #2, the area was
first divided into halves; then a sampling pass was made through the
middle of each half. The square sampling pattern in #5 measures 25x25
km,

For the test, the linear cloud fraction was measured for each of
the 8 configurations for all 4 quadrants of each of the 82 100x100 km
cloud fields. (There are 8 configurations, rather than 5, because the
row and column variants of numbers 1, 2, and 3 were treated separately
at this stage.) Thus, for each configuration there were 328 pairs of
linear and areal cloud ifractions. These were stratified according to
linear fraction in tenths, and a frequency count was made for the arcal

fraction. An example of the resulting matrix is shown in Table 3.1.
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TABLE 3.1 PFREQUENCY (%) WF ARFAL CLOUD FRAUTTION, NA, AND
SAMPILING ACCURACY, P'(.1), AS A FUNCTION OF LINEAR
CLOUD FRACTION, NI, FOR CONPLGURATION NO. 5,

N IS THE NUMBER OF CASES.

S L A 10! N ( P(.1)
0 65 28 7 0 O O 0O 0 0 0O 0 { 4;7~».93
1 5 47 3 11 3 0 o 0 0 0 o{ 38 .86
2 O 1140 40 S 0O © 0 0 O 0 35| .91
3 O 318 41 38 0 O 0 0 O 0 34| .97
4 O 0 0 17 38 3 7 0 0 O o‘ 291 .93
5 0 0 O l6 26 32 21 5 0 O ol 19 .79
6 o o0 0 0 12 21 39 24 3 0 ol 331 .84
7 O 0 0 0 3 6 29 5 6 o0 ol 31l .9
8 0 o0 0 ©Oo 0 0 13 33 46 8 oi 241 .87
9 o 0 0 0 o0 0 5 5 35 50 5| 20| .90

10 O o ¢ 0 0 0o o 0 9 50 41; 22, .91

AVERAGE  .892
(Because of rounding to integral values of percent, the froguencies o
not always sum to 100.)
From these distributions the sampling accuracy, P{.1), was evaluated
for the 11 values ot linear fraction, and these were then averaged
(without weighting for climatological frequency). Finally, the row

and column results for configurations %1, 2, and 2 were averaced.

’

The final results are displayed in Table 3.2 The best accuracy
is achieved by pattern #1, but it is 50% longer than the others.  Amor o
the 100 km patterns, #2 is the best. As previously noted, it 1s the
egual-area pattern. In Section 4 it will be secen that cyual-area con-
tigurations are the most efficient for point sam ling also. &85 1 oo

accurate than #2 or #3, but it 1s more cconomicat of tucl.,

TABLE 3.2 AVERAGE SAMPLING ACCURACY, P(.1), OF HORIZONTAL
TATTERNS .
(Contfigurations 1, 2, and 3 include passes alona

columns as well as the row patterns shown in
Figure 3.1.)

CONFIGURATION # LENGTH D
1 150 km .972
2 100 .960
3 100 L9139
4 100 LRG3
5] 100 A
24




As speculated In the introduction to this section, all of the pat-
terns here are more effective for sampling than the random passes treat-
ed in Section 2. The unweighted uverage of #(.1) for 100 km in Figure
2.2 1is .751, but this is an unfair comparison because the area involved
there is 100x100 km, whereas here a 100-km linear sample is used to
specity the cloud fraction for a 50x50 km areca. A more apt comparison,
albeit somewhat artificial, would be with the accuracy of a 200-km ran-
dom pass for the 100x100 km area. An estimate of ti.ls, from the theo-
retical results shown in Figure 2.3, is .871.

The principal findings of this section are:

A. When horizontal passes are used to specify the cloudiness
over a target area, it is more efficient to pattern and position the
passes than to sample along paths randomly located in the target area.

B. For a fixed total length of sampling path, an "equal-

area" pattern is more effective than the others examined here.

|
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SECTION 4. SAMPLING IN VERTICAL PATTERNS

The comparisons drawn in Section 2.1.2 highlight the fact that
horizontal sampling is intrinsically inefficient, owing to the strony
autocorrelation of cloudiness. For instance, sampling along 60 km
has the predictive power of only 5 independent point samples. The time
and fuel spent traversing the distance bhetwecen points that are 12 km
apart are effectively wasted.

This observation inspired a series of experiments to measure the

relative efficiency of point samples in reqular patterns, such as wou
result if the target volume were sampled in tight vertical spirals con-
nected by short horizontal segments at top or bottom, as illustrated in
Figure 1.1(C).

The 15 configurations tested are shown in Figure 4.1. For all,
the area is a 50x50 km quadrant of the basic cloud field; hence there
are 4 x 82 = 328 cases for each configuration. Corresponding to config-
urations #1-5 there are half-scale counterparts (#6-10) which are not
illustrated. In these, the identical pattern is arrayed over the co-cen-
tered square measuring 25x25 km. In all instances, including the half-
scale configurations, it is the cloud fraction of the 50x50 km area that
we are trying to specify from the cloud fraction of the point sample.

Patterns #12, 13 and 14 are "egqual-area" in the sense introduced
in the preceding section. Each sample point is the center of one of the
N equal squares into which the quadrant is subdivided. As we shall be
seeing, these are the most efficient of the configurations tested.

For each configquration, there are 328 pairs of point-sample cloud
fraction, NP, and areal cloud fraction, NA. These were stratified
according to the point fraction in tenths, and a frequency distribution
was constructed for the areal fraction. A typical result, that for
configuration #13, is shown in Table 4.1. From these distributions the
sampling accuracy, P(.1), was evaluated for the 11 values of point frac-
tion, and these were then averaged without weighting.

In addition, for each configuration NA was linearly regressed on
NP, using the 328 pairs of values. Subsequently the regression egquations

were tested on the independent sample of 4 x 50 = 200 cases. i

27
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Figure 4.1, pPoint-Sampling Configurations. #1 (6) Means

That Configuration #6 Is the Half-Scale Version

of #1., Sce Text for Further Details.
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TABLE 4.1 FREQUENCY DISTRIBUTION (%) O AREAL. CLOUD FRACTION, Ni, A
A FUNCTION OF POINT CLOUD FRACTION, NP, FOR CONI'IGURAT 10N

NO. 13.

NP and NA are, respectively, point and area tractions (tenths

N is number of cases; I'(.]1) is sampling accuracy ().

NP JA 0 1 2 3 4 5 © 7 8 9 10 N P(.1)
0 71 29 0 0 0 0] 0 0 0 0 0 28 100
1 23 55 20 2 0 0 0 0 0 0 0 44 ER
2 0 20 47 27 7 0 0 0 0 0 0 15 94
3 0] 0 37 47 40 6 0 0 0 0 0 51 94
4 0 0 2 21 48 19 10 0 0 0 0 42 84
5 0 0 0 10 35 25 25 5 0 0 0 20 85
6 0 0 0 0 13 23 35 28 3 0 0 40 80
7 0 0 0 0 0 5 27 41 27 0 0 22 95
8 0 0 0 0 0 0 7 43 33 17 0 30 93
9 0 0 0 0 0 0 4 4 21 57 14 28 92

10 0 0 0 0 0 0 0 0 0 25 75 8 100

The results of these analyses are plotted in Figure 4.2 as a func-
tion of the number of points in the sampling pattern. The sampling
accuracy, P(.1l), is shown in the upper half of the figure, with the
points identified by confiqguration number. The 3 equal-area configura-
tions, which are connected by lines, are consistentivy the best in their
class.

In the lower half of Figure 4.2 the standard error of regression
is plotted. Again the 3 cases of equal-area patterns are superior.

The errors shown here are based on the dependent data, but as can be
seen in Table 4.2, there is insignificant difference between thesc and
the standard errors based on independent data. 1In fact, the two sets
of errors have identical averages, 1.0 tenths.

The data plotted in Figure 4.2, plus the correlation coefficicnts,
are tabulated in Table 4.2.

Results thus far in this section are based on the realistic assump-

) ;

tion that NP is given and NA is to be specified. The 328 pairs of valuecs

for each confiquration were also analyzed assuming NA given and NP’ to be
predicted. This was done to facilitate a direct comparison, in terms of
sampling accuracy, between these configurations and the same number of

random points. The results are given in Table 4.3, where the columns
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labeled B denote the unweighted averayc accuracy of random patterns as
derived from the binomial distribution. With only a few exceptions,
which are mainly for the half-scale patterns, the random patterns are
less efficient than all of the systematic patterns. This suggests that
none of the full scale patterns suffers from loss of efficiency due to
spatial autocorrelation. That circumstance was to be expected for all of
the full scale patterns except, possibly, #'s 5 and 14, where the points
are separated by only 10 km. In Appendix C, the average value of the
"independence length" is found to be 12 km,

The values of P(.1l) are different between Tables 4.2 and 4.3 be-
cause of the difference in the underlying conditional frequencies: NP
being the predictor in 4.2, NA in 4.3. NP is seen to be the more effi-
cient predictor for the larger samples, NA for the smaller.

As mentioned in Section 2, the standard error of estimate is some-
times used as the index of sampling accuracy. Table 4.2 lists both
P(.1) and standard error of regression for the 15 configurations. Figure
4.3 reveals that the two measures are well related here, but there is
no assurance that this relation 1s applicable to other sampling patterns.

The principal findings of this section are:

A, Point samples taken in well-distributed patterns are gen-
erally more efficient than random point samples. Consequently, the
binomial distribution can be used as a conservative estimator of the
expected accuracy of systematic patterns of point samples.

B. Equal-area point patterns are the most efficient of the

configurations tested,
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5. LOGISTICAL COMPARISONS AND RECOMMENDATIONS

5.1 comparison of Horizontal and Vertical sSampling Pactoerns,

In the two preceding sections it has been shown that the so-called
equal~area configurations, whether lines or points, arc the most effi-
cient samplers. It remains to consider the logistical efficiency of
lines and points; that is, to compare the fuel and time recguired to exe-
cute the horizontal and vertical sampling patterns that are the means of
achieving the line and point configurations.

The performance specifications assumed for the sampling platform
are shown in Table 5.1. These were provided by Dr. Gerald Seemann,
president of Developmental Sciences, Tnc., in response to a request for
gencralized values that are compatible with capabilities of state-of-
the-art automatically piloted vehicles (APV's).

The volume to be sampled is 50 km across and from 1,000 to 10,000
feet in the vertical. The horizontal samples are taken at intervals of
1,000 feet, from top to bottom, for a total of 10 levels.

The horizontal patterns chosen for the "flyoff" are #'s 2 and 5 in
Figure 3.1, hereafter referred to as H-2 and H-5, Both yield a 100 km

sample at each level. H-2 is the efficient equal-area pattern, but it

has the drawback of requiring an extra leg of 25 km to close the pattern.
For present purposes we ignore any additional information that might be

gleaned from the bridging leg, H-5 is intrinsically less accurate than

ti-2 but requires no extra leg,
The vertical patterns are #'s 12 and 13 in Figure 4.1 — henceforth,
v~12 and v-13., They are, respectively, the equal-area 9-point and 16~
point confiqurations. As jllustrated in Figure 1.1, they are gener- i
ated by flying alternate ascents and descents in tight spirals. A

standard-rate turn produces a radius of about 0.65 km for the spiral,

which is treated here as a vertical line. The spirals are linked at !

top and bottom by horizontal legs: 17 km long for v-12, 13 km for v-13.

Again, we ignore the possibility of sampling on these legs. !
The results of the flyotf are posted in Table 5.2, where the pat-

terns are listed in order ot decreasing time and fuel consumption.
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Because the horizontal patterns are flown from top to bottom, they en-

tail no ascents. The values of sampling accuracy are derived from Tables

3.2 and 4.2, and are cited here only for intercomparison.

TABLE 5.1 PERFORMANCE POSTULATED FOR APV.

FLIGHT AIRSPEED VERTICAL RATE FUEL RATE
MODE (KTS) (FT/MIN) (LBS/HR)
HORIZONTAL 70 — 8
ASCENT 65 500 10
DESCENT 70 2000 5

TABLE 5.2 TIME AND FUEL REQUIRED FOR VARIOUS SAMPLING STRATEGIES.

H-2 H-5 v-13 v-12

PATTERN TIME FUEL TIME FUEL TIME FUEL TIME FUEL
SEGMENTS (HRS)  (LBS) (HRS)  (LBS) (HRS)  (LBS) (HRS)  (LBS)
HORIZONTAL 9.64 77.09 7.71 61.67 1.45 11.56 1.03 8.22
ASCENT —_— -_ _— —_— 2.40 24.00 1.20 12.00
DESCENT 0.08 0.38 0.08 0.38 0.60 3.00 0.38 1.88
TOTAL 9.72 77.47 7.79 62.05 4.45 38.56 2.61 22.10
P(.1) (%) 96 89 93 81

As a class, the vertical patterns are the indisputable winners of
the flyoff. H-2 does afford the best sampling accuracy, but it is only
slightly more accurate than V-13 while it consumes more than twice the
fuel and time. Even H-5, which is less accurate than V-13, takes three-
quarters more time and uses 60% more fuel. The most economical of the
four patterns, V-12, requires less than 60% of the time or fuel consumed
by V-13, but at a sizeable penalty in accuracy. However, as will be
seen below, even V-12 can be expected to achicve 90% accuracy on averaae

in the real world.

5.2 Refined Estimates of Sampliny Accuracy

There are two reasons why the estimates of sampling accuracy in

Table 5.2 are pessimistic: A) they are unweighted averages, and R)  they




are for cloud levels rather than layers.

why an unweighted average of P(.1) is an improper and, usually,
pessimistic estimator of sampling accuracy is discussed in Section 2
and Appendix B. The correct estimator of the sampling accuracy expec-
table in routine practice is a climatically weighted average. Figure
B-1 suggests that this estimator is strongly correlated with the degree
to which the frequency of cloud amount is U-shaped.

Climatically weighted averages of sampling accuracy for the 4 pat-
terns in the flyoff are listed in Table 5.3. Again, Ft. Rucker July
and Fulda 1-3 KF'T January are the two cloud climatologies used for the
illustration. Now, even the "cheap" pattern, V-12, averages 90% in

accuracy.

TABLE 5.3 AVERAGE SAMPLING ACCURACY.

P(.1) (&)
WEIGHTED
SAMPLING PATTERN UNWEIGHTED FT. RUCKER FULDA AVERAGE
H-2 96 98 99 98
H-5 89 93 96 95
v-13 93 95 98 97
v-12 81 88 924 91

These values of accuracy are valid for sampling a level. In prac-
tice, a single cloud layer will be sampled at more than one level.
This is particularly true for vertical patterns, in which the levels
are as close as 33 feet if the sensor is sampled at the rate of | Hz.
The estimator for the cloud fraction of the layer is the average of
the cloud fractions for all levels sampled within the layer. Conse-~
quently, the layer cloud fraction is normally more accurate than the
level fraction. Just how much more accurate is a question that could
be readily answered if the level samples were independent, but they
are not, owing again to the spatial coherence of cloudiness. It 1is
beyond the scope of our data to appraise quantitatively the improve-
ment due to averaging of interdependent levels, but it can be taken
with confidence that the values in Table 5.3 are conservative estima-

tors for cloud layers of substantial thickness.
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5.3 Other Advantages of Vertical Sampling Patterns.

Besides the distinct superiority in fuel economy, vertical sampling
patterns have two other significant advantayes over horizontal: qgreater
accuracy both in estimates of cloud base/top and in total cloud amount.

In the present scenario, if the cloud sensor is sampled at 1 Hz,
cloud heights are determined from the vertical patterns to within 10
feet on ascent, whereas there is an uncertainty of * 500 feet in the
estimates of cloud base or top derived from horizontal sampling.

From vertical samples, the total cloud amount (within the volume
sampled) is readily estimated, as simply the fraction of profiles on
which cloudiness is detected at any height. This estimate of total
cloudiness, as argued above with respect to a layer, is at least as
accurate as the estimate of cloud amount at a level, and probably more
SO.

By contrast, estimating the total cloud amount from horizontal
samples depends on answering two sometimes difficult guestions: how
many cloud layers are present, and how do they overlap? For sampling
at 1,000~ft intervals it is reasonable, but not necessarily correct,
to assume that any cloudiness encountered on adjacent levels is part
of a single layer. Multiple layers are declared to exist only when
one or more intervening cloud-free levels are observed. As to the
overlap of multiple layers, one has little choice but to assume the
cloud elements in separate layers to be independent in their position-
ing. Clearly, both steps in the process are potential sources of sig-
nificant error. For example, if 5/10 cloudiness is detected at both
of two levels, the estimate of total cloudiness will be either 5/10
or 8/10 depending on whether the two levels are assumed to be part of

a single layer or two layers arec assumed to be present.

5.4 Recommended Operational Procedure.

5.4.1 Choice of Sample Size.
The unequivocal finding of this section is that a vertical, egual-

area sampling pattern is superior. In practice, then, the only choice

open is how many points (protfiles) there will be in the pattern. This




mist be decided as a compromise amonyg accuracy desired, volume within
which the cloud parameters are to be determined, and time/fuel avail-
able for sampling.

Save ftor the possibility ot using a faster APV, there are only two
means of reducing the time required to sample the cloudiness over a
target area: A) reduce the altitude range sampled; B) reduce the num-
ber of profiles {(points) sampled.

Sampling time does not decrease linearly with reduction in alti-
tude range because, even in vertical sampling, the horizontal legs
account for a non-trivial fraction of the overall time. [n Table 5.2
the horizontal time is at least 1/3 of the total for V-12 and V-13.

Nor does the overall sampling time scale linearly with the number
of points in the pattern. While the time required for the vertical
components is proportional to the number of points, the time spent on
the horizontal component scales almost like the square root of the
number of points. The reason for this is that, as the number of points
decreases in an equal-area pattern, the separation of the points in-
creases.

The penalty for reducing the number of profiles sampled is, of
course, reduced accuracy of the estimates of cloud amount. If the
sampling area is 50 km across, then the values of P(.1) cited in Table
5.3 are valid estimates for the areal cloud fraction at a level. How-
ever, as noted above, these are conservative estimates for the accuracy
of the cloud fraction of a layer or for the accuracy of total cloud
amount.

Accuracies achievable with samples sizes other than 9 or 16 points
can be derived by interpolation/extrapolation from Table 5.3. For
this purpose Figure 2.3(A) is a useful guide even though it depicts

the dependence of P(.1) on sample size for random point samples. In f

Section (1 it 1s shown that random points are a conservative estimator
ot the accuracy ror equal-area point patterns.
LLikewise, the ettcct on P(.1) ot the :-limatic frequency of cloud

amount can be judged from Figqure B-1, subject to recognition that the

absolute values of U(.1) in PFigure B~]l ure ftor a 10-point random jattoyn,

5.4.2 Interpretation ot Data.

Once taken and relayed to the ground, the data are readily con-




vertible into the 3 operational parameters desired: A} total cloud
amount in the target area, B) base and to}. of each cloud layer pres-

ent, and C) cloud amount in each layer.

The inference of total cloud amount (within the altitude range

sampled) is so simple that it could easily be derived by an onboard
ccunting circuit. The total cloud amount is nothing but the frac-
tion of profiles on which cloudiness was encountered at any level.
Recognizing the individual cloud layers and fixing the basec and
top of each is probably most easily done subjectively from a simple,

side-by-side plot of the profiles.

| sy A TN

Once the base and top of a layer have been established, the cloud

amount for the layer is merely the average number of cloudy points

among all profiles and within the altitude range of the layer. This

[

average 1s the equivalent of estimating the cloud fraction for all

levels sampled within the layer and then averaging the level fractions.

3




G. CONVERSION i"ROM CLOUD FRACTION TO CLOUD COVEK

Throughout the report to this point we have been concerned with
estimating projected cloud fraction whereas the contract Statement of
Work asks for estimates of cloud cover. The two measures of cloud
amount may differ because the projected fraction, or earth cover, is
not sensitive to cloud thickness while the sides of distant cloud
elements do contribute to sky cover, the fractional obscuration of
the sky when viewed from a point on the ground. Therefore, one would
expect: A) the two measures to be identical whenever the earth cover
is either 0 or 10 tenths, and B) sky cover to be somewhat the greater
for intermediate values of earth cover.

To explore this relationship quantitatively, we exploited an anal-~
ysis already performed on whole-sky photographs taken in conjunction
with standa:sd sky cover observations.2 These observations were made
daily at 0900, 1200 and 1500 CST over a span of more than 3 years, at
the National Weather Service observing site in Columbia, MO. 1In the
original analysis, 2,805 photographs and matching observations of sky
cover were used to derive frequency distributions of cloud cover by
sky cover and by sector of the celestial dome.

Table 3 of the reference gives, as a function of sky cover, the
cumulative frequency of cloud-free fraction in a circle of 50o angular
diameter centered on the zenith. From this was derived Figure 6.1
showing the average sky cover, N, as a function of N(50), the cloud
cover of the 50° sector. Since the viewing angle of this sector de-
parts so slightly from vertical, the cloud cover for the sector should
approximately egual the cloud fraction, NA(50), of the sector. Initial-
ly, it was our further cxpectation that, when averaged over enough
cases, the cloud fraction, NA, of the total sky and NA(50) should be
almost equal. However, Figure 6.1 clearly invalidates this hypothesis,
for it would mean that total cloud fraction exceeds total sky cover in

the upper range of cloud fraction. A scale phenomenon is responsible

for tne fact that, even on average, NA(50) and NA are unequal. (Not
including the extreme points — N(50) = 0 and N(50) = 10 — which account
2. ILund, 1. A., D. D, Grantham and R. E, Davis, 1980: Estimating

probabilities of cloud~free fields-of-view from the earth through
the atmosphere. Journal of Applied Meteorology, 19: 452-463.
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Figure 6.1. Mean Sky Cover and Standard Deviation as a
Function of Cloud Cover of the Central 50°

Sector.
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for 75% ot the cases, cach point in Figqure 6.1 1s based on an average
of just under 80 cases.)

The existence ot this scale phenomenon is most easlily recognized
in the extreme cases., Consider the cases for which tne narrow over-
nead sector is clear.  In at least some of these cases there must e
cloudiness eclsewhere in the sky. Conseguently the average ot N for
these cases must be yreater than U. At the other extreme, the averase
ot N for all cases in which NA(50) = ] must be less than 1. The mau-
nitude ot the phenomenon probably depends on the size of the sector,
which is 10% of the total sky for the 50° sector,

To quantify this scale phenomenon, we return to our own cloud

data. Figure 6.2 shows how the cloud fraction, NA, of the 100x100 km
total area varies with NA(Q), the cloud fraction of the quadrant.
This plot, which is based on the 82 cases of the development sample
of cloud fields, confirms the expected shape of the relationship. The
line of regression is

NA = 1.18 + 0,735 NA(Q) (6.1)
with a correlation coefficient of 0,99,

Desplite the difference in sector size — 25% for the quadrant vs.
10% tor the 50° sector — we assume that Eq. (6.1) holds for the de-
pendence of NA on NA(50). This enables Figure 6.1 to be converted
into Figure 6.3 depicting sky cover as a function of earth cover -
just the relationship that we have been seeking. The * 1/10 confidence
limits for earth cover are also shown, and the sigma-bars in Figure
6.1 apply to the ordinates of the points in Figure 6.3.

Figure 6.3 shows that sky cover tends to exceed carth cover by a
small amount, particularly for scattered cloudiness. However, the dif-
ference is erratic and is comparable in magnitude to the noise level
of the data. Therefore, we feel that in practice there is no basis
herce for drawing a distinction between sky cover and earth cover. In
other words, the projected cloud fEEEElQE for the area as derived from
the line or point samples discussed in earlier sections should be tak-

en as equal to the corresponding cloud cover.
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APPENDIX A

OBSERVED '1L.OUD FIEILDS

McIDAS (Man~Computer Tnteractive Data Access System) is a mini-
computer-based system developed at the University of Wisconsin and
designed for the gathering and display of meteorological data. Among
its capabilities are the analysis and contouring of conventional mete-
orological parameters (temperature, pressure, vorticity, streamlines,
etc.), the plotting of temperature and moisture soundings, and the
depiction of satellite imagery (visible and infrared). DPlotting rou-
tines are prompted via the terminal keyboard and displayed in color on
a CRT.

As an interactive system McIDAS is a very powerful tool that can
be put to many varied uses. 1t is especially well suited for the in-
vestigation of clouds since both conventional data and satellite pic-
tures are available for scrutiny.

The cloud data of interest in this report were "half-mile" reso-
lution visible imagery. In particular the goal was to acyuire a rep-
resentative cross section of samples of single layer clouds that
covered the spectrum from nearly clear to nearly overcast sky condi-
tions,

Data collection commenced on December 10, 1980 and continued un-
til May 18, 1981. Since some satellite images had been archived on
Betamax tapes, it was possible to obtain samples from as tar back as
May 6, 1980. 1In all, 132 separate cases were selected.

The usual operating procedure was to examine a satellite photo-
graph of low resolution in the morning in order to identify arcas where
single layer clouds were located. During the cold weather months care
had to be exercised to insure that areas where snowcover was present
were not selected for sampling. This precaution was taken to jprevent
the possibility of ambiguity between reflections from a snow surtace
and those from a cloud top. Table A-1 shows the locations at which
the cloud samples were taken. A large proportion of the cases was
taken from the southeastern Unitced States because of the snowcover

problem and the fact that, since other uscers ot MecIDAX were mainly in-

terested in the eastern half ot the country, most satellite pictures




TABLE A-1., LOCATIONS OF SAMPLES.

Location

Florida
Virginia

North Carolina
Alabama

Georgia
Pennsylvania
Texas

Louisiana
Colorado
Tennessee
Mississippi
South Carolina
Ontario, Canada
South Dakota
Michigan

Ohio

New Mexico

New Hampshire
Minnesota
Montana
Alberta, Canada
Idaho

Kentucky

West Virginia
Northern Mexico
Nevada

New York
Nebraska

Maine

Quebec, Canada
Florida Keys
Illinois

New Jersey
Massachusetts
Arkansas
Florida coastal waters

North Carolina coastal waters

Gulf of Mexico

New Jersey coastal waters
South Carolina coastal waters

Lake Ontario

TOTAL
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were centered there.

Once a general area was selected from the low resolutioun satel-
lite photograph, a higher resolution (nominal half-mile) image was in-
gested into McIDAS. Since resolution is a function of distance from
the sub-satellite point, the actual resolution varied from .620-1. 140
miles in the north-south direction to .473-.860 miles in the cast-west
direction within the cases considered, From the high resolution image
an array of 135x135 pixels was picked and this constituted a single
sample,

Local noon was often chosen as sampling time so that the sun would
be high in the sky and ground-cloud contrast would be a maximum. Fach
pixel in the satellite image has a brightness (watts cm_2 steradian—l)
associated with it. After adjustment for calibration cach pixel was
labelled with a brightness count in the range 0-255. Since the purpose
of obtaining the satellite data was to produce a field that explicitly
depicted the location of cloud elements, a threshold brightness for
cloud designation had to be chosen. Any pixel with a brightness above
the threshold was designated as cloud. A value of 100 counts was most
often chosen as the brightness threshold between cloud and no cloud
aithouqh the range was from 50-100 counts. Threshold brightness de-
pended on time of day of sampling (sun angle) and type and thickness
of cloud (reflectivity). Printed output of x's for clouds and blanks
for no clouds was produced for each sample at the time of selection.

There is no assurance, of course, that the subjectively chosen
threshold value of brightness precisely defines the cloud boundary.
However, since our purposes require only rcalistic patterns of clouds
and spaces, it matters little whether the assumed cloud boundary in a
particular instance lies somewhat inside or outside the actual bound =
ary.

Since visual inspection of the satellite image, alone, is not auf-
ficient to quarantee that the clouds were restricted to a single layer,
several other sources of information were consulted, These included
circutt "A" reports, synoptic charts and use of MeIDAS to overlay sar-
face weather observation on the satellite image. Despite these procau-
tions there still can be no assurance that all the cloud samp les were

restricted to a single layer.




Once a particular sample was selected, McIDAS wrote the bright-
ness distribution in the area of interest onto magnetic tape. Further
processing required use of a large mainframe computer (CDC 6600), for
which software was written for data conversion and unpacking. This in-
cluded a short program which calculated the distance between pixels and
then output the number of pixels necessary so that each sample area
would be approximately 100 km x 100 km,

Upon examination of the entire cloud field (via the printouts) a
suitable sub-area was chosen such that the correct number of pixels
for the 100 km2 area would be analyzed. The decision as to which sub-
area to choose was arrived at subjectively. Additicnal software was

developed for the data analysis.




APPENDIX B

THEORE'TTCAL SAMPLING MODERI,

Visualize a cloud layer covering some fraction, NA, of the target
area. Suppose that some level within the cloud is sampled at a random-
ly positioned point. The probability that this point is in cloud is NA,
the chance of its being in clear air is (1-NA).

Now suppose that the level is sampled at n random points. The
probability that all points are in cloud is (NA)n, that all are in
clear air (l-NA)n. The probability, P(N), that any intermediate number,
N, of the n points is in cloud is given by the binomial distribution:

nl

_ ! N . _ n=-N -
PO = srmoyt VA (N T (13-1)

In Table B-1 is shown the binomial distribution of frequencies
(probabilities) corresponding to n = 10 and NA = .444. This distribu-~
tion is labeled Fl. The distribution labeled F2, which was transterred
from Table 2.1, characterizes the cloud fraction of 60-km passes in one
of our observed cloud fields. NA = .444 for F2 also. The comparison
is shown merely for general interest. There is no reason to expect

close agreement between the two distributions.

TABLE B-1. FREQUENCY (F) OF CLOUD FRACTION (NJ') OF A SAMPLE.
F1 is the binomial distribution for a set of 10 points.
F2, which was taken from Table 2.1, is for o0-km passes.

See text for P(,1).

NP (tenths) O 1 2 3 4 5 6 7 8 9 10 P(.1)

Fl (%) 0 2 8 17 24 23 15 7 2 0 ) 64
F2 (%) 1 3 7 11 19 23 18 11 5 2 0 53

As a safety measure, the applicability of the binomial distribu-
tion to our cloud data was directly tested and confirmed. Results will
be illustrated later in this section.

The 11x1] matrix that forms the main portion of Table R-2A ix

merely the evaluation of Eq. (k-1) for n = 10 and for all intedaral
10ths of NA. Each row states the frequency distributilon o' sample
49
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cloud rraction, NP, corresponding to the particular value of areal cloud
fraction, NA, For convenience, the principal diagonal has been lined in.

We define an index of sampling accuracy, denoted P(.l), as the fre-
quency of cases for which sample and arcal cloud fraction agree to within
1,710 — 1.e., | NP - NA < 1. Thus, for each row in the matrix, P(.1)
is the sum of the freguency on the diagonal and the two horizontally
1 lanking values, except that there i1s but one flanking value when NA = 0
or 1. P(.1) is tabulated in the final column of Table B-2A. It is
symmetric about NA = 5, where it is at minimum. This illustrates a gen-
eral truth, namely, that cloud sampling is commonly least accurate when
the area is half clouded.

Another way to describe the basic matrix is that it embodies the
conditional frequency of sample cloud fraction, given the areal cloud
traction. But the contract Statement of Work poses the converse ques-
tion: given the sample cloud fraction, what is the frequency distribu-
tion of areal fraction? It is possible to transform between the two
formulations with the aid of one of Bayes' rules, which will now be
derived.

consider the joint frequency of NA and NP, P(NA,NP) — i.e., the
frequency of the simultaneous occurrence of specified values of areal
and sample cloud fractions. This can be evaluated as the product of
the conditional frecquency of NP, given NA, and the unconditional fre-
quency of NA:

P(NA,NP) = P(NP|NA) x P(NA), (B-2)
conversely, the joint frequency of NP and NA can bo expressed as

P(NP,NA) = P(NA|NP) x P(NP). (B-3)

But, by Jdefinition, P(NA,NP) = P(NP,NA), and from Egs. (B-2) and

{ti-=3) it rtollows that

P(NA|NP) = P(NP|NA) x P(NA)/P(NP). (8-4)

The vonditional frequency on the lefthand side of Eq., (B-4) is the

answer to the SOW's question. The first factor on the righthand




TABLE B-2

CONDITIONAL FREQUENCY (%) OF CLOUD FRACTION (TENTHS),
BASED ON SAMPLE OF 10 RANDOM POINTS.

A. Given the Areal Fraction (NA)}.
B. Given the Sample Fraction (NP).
see text for other details.

AN 012 34 n 67 W9 10 M rL)
! O 100 0 0 0 0 0o 0 0 0 o 0 25 100
' 1 353 19 6 1 0 0O O 0 O 0 04 93
2 11 2730 20 9 3 1 0 0 0O 0 03 77
3 3012 23S27.20 10 4 1 0 O 0 04 70
4 1 4 12 2072520 11 4 1 0 0 04 67
(A) 5 0 1 4 12 21>25.21 12 4 1 0 01 66
6 0o 0o 1 4 11 20>25_21 12 4 1 04 67 1
7 o o o0 1 4 10 202723 12 3 03 70
8 o 0o 0 0 1 3 9 2073027 11 04 77
9 o 0o 0o 0 0 0 1 6 1939 35 02 93
i 10 o o 0 0 0 0 0 0 0 0100 46 100
NP o 123 4 5 6 7 8 9 1o pow) PC)
©o 93 5 1 0 0 0 0 0 0 o0 o0 27 98
1 0™51.27 16 5 0 0 O 0O 0 O 03 78 ,
2 0 2428 29 15 1 1 0 0 0 0 03 82
3 O 7 2035 28 4 6 1 0 0 O 03 82
4 0 2 9 28235 7 15 4 1 0 0 03 69
(B) 5 0 0 3 15 20°N9_ 29 11 4 0 0 03 67
6 6 0 1 5 16 736 21 13 1 0 03 65
7 0o 0 0 1 6 4 3028 28 4 0O 03 35
8 0 0 0 0 1 2 17 24> 42 13 0 03 20
9 O 0 0 0 0 0 7 15 453 0 02 77
10 0o 0o 0 0 o 0 0 0 1 ?\‘~97 47 99
TABLE B-3  SAME AS TABLE B-28, EXCEPT FOR CLOUD CLIMATOLOGY or ‘
FT. RUCKER, AL, IN JULY.
NA
N O 1 2 3 4 5 6 7 8 9 10 P(NP)  P(.1)
: o 812 5 1 0 0 0o 0 0 0 0 13 93
] 03738 17 6 1 0 0 O 0 0 04 75
2 0 16™5 28 15 5 1 0 0 0 0 05 79
3 0 4 22>N30_.25 12 4 1 0 0 0 06 77
4 0 1 10 22821 11 6 1 0o o0 06 71
5 0 0 3 11 22 24_19 16 5 0 0 06 65
4 o 0 0 1 4 11 18 22,28 15 1 0 06 ot
! 7 O 0 o0 1 4 9 17 33_30 7 0 07 80
8 0 0 0 0 1 3 8 26 41 20 0 08 87
9 0o 0 0o 0 0 1 i 14 39 43_ 0 08 82
10 O 0o 0 0 0 o0 0 1 4 o>a 1 9




*
side 1s just the conditional frequency in Table B-2A, Ir we assume

that the sampling takes place randomly in time or on a day-to~day basis,
then the unconditional frequency of NA is nothing but the climatic
frequency, which is knowable. But what about the unconditional freguency
of sample fraction, P(NP)? This can be deduced by recognizing that a
sample fraction occurs only in conjunction with some area fraction. Thus,
the unconditional frequency of a particular value of NP is the sum of its

joint fregquency with all possible values on NA. 1In other words,
)
P(NP) = o P(NP|NA) x P (NA) (B-5)

and, finally,

b(NA|ND) = P(NP|NA) x P(NA) . (B-6)

L P(NP|NA) x P(NA)
NA

Note that P(NA|NP) is dependent on the climatic fregquency of the

areal fraction. This climatic frequency, P(NA), is tabulated in the
next-to-last column of Table B-2A. The particular distribution is for
cloudiness in the altitude range 0-3 Kft at Fulda, FRG, in January,
1200~1400 LST. These values were derived by Lund using a model devel-
oped by Uringorten.3

Table B-2B uses this P(NA) to construct from Eg. (B-06) a matrix
that is equivalent to the A-matrix except that now the sampled cloud
fraction, rather than the area fraction, is the predictor. Again, the
last column tallies sampling accuracy, P(.1l), as a function of sample
cloud fraction,

To show how this second matrix depends on climatology, Table B-3
was evaluated for the areal cloud frequency at Ft. Rucker, AL, in July.
This is the B-matrix only, for the A-matrix depends only on the number
of points in the sample and is, therefore, the same for the two cases.

The c¢lim:tic frequencies used for Table B-3 are listed in Tak'e B-4.
* As opreviously noted, because of roundoff, the sum of frequencies
is not always precisely 100+,

3. Grirjorten, I[.I., 1981: Climatic probabilities of the vertical
distribution of cloud cover. AFGL-TN (in press).




B-matrices for a lU~point random sample were also constiucted tor

the 8 additional cloud climatologies listed in Table k-4, bt they
will not be reproduced in detail here. Tustead, they will be simma-
rized below.

Although the Gringorten techniqgue was not designed to treat layers
of zero-thickness, it can be pushed formally to this limit, which is
the "level" of our sampling problem. Conseuuently, evaluations tor a
mid-level accompany each layer in Table B-4.

In Table B-4, "Mean" is the average cloudiness. "U" is an index
formed by summing the frequencies for NA = 0 and NA = 1., It is a crude
measure of the "U-shapedness" of the frequency distribution, and its
significance will become evident shortly. "Rank" is the order of the
tabulated frequency distributions in terms of the U-index, with 1 as-
signed to the lowest value of U. Note that, as expectable, the distri-
bution for a level is consistently more U-shaped than that of the em-

bedding lavyer.

TABLE B~4 CLIMATOLOGICAL FREQUENCY (%) OF AREAL CLOUDINES:S.

Ft. Rucker is from the Uniform Summary of wWeather
Observations,

Fulda and Adana are for January, 1200-1400 Ls7T,
and were generated with the Gringorten techniaus

FT. RUCKER FULDA  ADANA/INCIRLIK
0-3 2 6-10 8 0-3 2 6-10 8
NA  JUL OCT KFT KFT KFT KFT KFT KFT KT KET
0 10 39 25 85 44 76 86 94 66 70
1 4 7 4 2 a 4 5 2 10 9
2 6 5 3 2 4 1 2 1 5 5
3 6 4 4 1 4 2 2 1 4 3
4 6 4 4 2 3 3 1 1 3
5 6 3 1 1 3 1 1 0 2 3
6 6 3 4 1 2 2 1 0 2 1
7 9 4 3 0 4 1 1 1 2 2
8 11 5 4 1 3 1 0 0 2 |
9 9 4 2 1 3 2 0 0 2 >
10 27 24 46 4 26 7 1 0 2 2
MEAN 6 4 6 1 4 ] 0 0 1 ]
u 37 63 7t 89 70 83 87 94 68 72
RANK 1 2 5 9 4 7 8 10 3 o

53
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dow i'(.1) varies with cloud amount 1s interesting, but tou facilitate
comparison ot sampling strategies in terms of accuracy, it would be more
usetul to have some sort of lumped value. However, a simple average of
(.1) stands to be mislecading. Hecause I'(.1l) is a significant function
ot cloud fraction, a straight average would not correctly depict the
accuracy that could be expected from the particular strategy if 1t were
to be used randomly in time or on a day-to-day basis. Yor a proper
estimate of this expectation, the average of P(.1) must be weighted by
the climatological cloud frequency. This means, or course, that the ex-
pected sampling accuracy varies with location, season, time of day, alti-
tude, etc., as well as with size of sample.

In Table B-5, "U" is the shape index mentioned earlier, and several
averages of sampling accuracy are presented for each of the 10 climatol-
ogles 1in Table B-4., P'(.1l) refers to the accuracy index when areal frac-
tion is the predictor. P(.1l) is the same measure when the point-sample
fraction is the predictor. Without a superscript w, the average is un-
weighted. Note that the unweighted average of P'(.1) is the same for
all 10 cases. This is as it should be, because P'(.1l) depends only on
the number of points in the random sample, 10 here, and not at all on
the climatological cloud frequency. Note that ETTIT, the accuracy index
when the sample fraction is used as a predictor, is slightly lower on
average than P'(.1l). On the other hand, the weighted mean is invariably
and significantly larger than either of the unweighted values. It is
this weighted value that is the meaningful estimate of average accuracy
expected in practice.

Strictly speaking, the two distributions for it. Rucker are inap-
propriate here because they refer to total sky cover. The other 8 dis-
tributions were custom-tailored to represent conditions in a layer or
at a level, which is what our scenario calls for. The justification

for introducing these "alien" dat. is that they extend the range of U

. . . — W
available for Figure B-1, which shows a clean relation between P(.1)

and U. The lowest point corresponds to P'(,1), which may be viewed as
the welghted mean for a uniform distribution., For such a distribution
U = 18%.

in Table B-5 there 1s no climatologically weighted average for
P'(.1). The reason for this is that 1t is necessarily identical to

e W . .
P{.1) . In forming an average, the ame matrix elements are summed




whether KA or NP is the predictor — namely o]l c¢lements for which

1
PNA—NP < 1. Basically the values in these positions differ between tiw
A~ and B-matrices, but when weighted by the aryrorriate climatological

frequency, what is summed is terms of the torm P(NlA) X P(A) or

P(A|P) x P(P).

In either case, the result is D'(A,P).

In short, the

climatologically weighted mean of our index of sampling accuracy is

simply the sum of the joint frequency of NA and NP taken over a

wide band along the principal diagonal,

i-element-

TABLE B-5 AVERAGED SAMPLING ACCURACY (%) FOR EACH OF 10
CLIMATOLOGICAIL CLOUD FREQUENCIES.
Based on binomial distribution for n = 10.
See text for significance of the several values
of P(.1)
STATION u P'(.1) P(.1) rn"
Ft. Rucker Jul 37 79.9 79.4 84.8
" Oct 63 " 81.0 91.6
Fulda 0-3 kft 71 " 80.2 92.9
" 2 kft 89 " 80.6 97.5
" 6-10 kft 70 " 80,5 92.8
" 8 kft 83 " 80.0 96. 2
Adana/Incirlik 0-3 kft 87 " 71.7 97.3
" 2 kft 94 " 65.1 98.7
* 6-10 kft 68 " 79.5 93.4
" 8 kft 72 " 79.5 94.3
Mean 79.9 77.7 93.9
RMS A 5.39 17.9
Mean |A| 2.71 16.2
As nolted earlier, an acid test was conducted to verity that the
mean of random point samples from one of our cloud tields is distributed

binomially.

The test was conducted separately for N = 5, 10, 20, and

The procedure will be illustrated here for the case of N 10.

Ten points are randomly positioned in once of

fields.

NOP,

the number of points

talling within

the 100x100 km load

cloud, 18 counted,

30,




.1

P

10

U-INDEX (%)

Figure B-1. Weighted Sampling Accuracy as a Function of
the U-Index of Cloud Frequency.

Based on Binomial Distribution for n = 10,
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This constitutes 1| trial. The trial is repeated tor g total of 100, and

the frequency distribution of NOP is evaluated. This is the experimental
distribution for the particular case. To match it, the binomial distri-
bution is derived for the observed value of NA, the areal cloud fraction,
and for N = 10.

All 82 cases in the development sample ot cloud fields arc processcd
in this manner. The resulting 82 distributions of Nob are grouped by
value of NA (rounded to tenths) and averaged. The upshot is an 11x11
matrix of the observed conditional frequency of NOP, given NA. {(In the
general case this matrix is 11 x (N+1).}) A matrix ot theoretical fre-
quencies 1is generated by performing the same operations on the binomial
distributions for the 82 cases. The sampling accuracy, P(.1), is eval-
uated for each row in both matrices.

The differences between corresponding elements of the two mutrices
are shown in Table B-6, The close agreement is immediately evident,
considering that the row-sum for both mavices is 100 (within roundotf).
For more detailed inspection, the theoretical matrix here is almost
identical to that shown in Table B-2A, the dJdifference being that the
rows here are averages of distributions based on generally non-inteyral
values of NA.

The last column in Table B~6 shows that, not suprisingly, the agree-
ment in P(.1) between observed .und thecretical distributions is also very

good.

TABLE B-6 DIFFERENCE BETWEEN FREQUENCIES OF OBSERVED RANDOM

SAMPLES AND BINOMIAL DISTRIBUTION FOR N - 10.
NA and NP are 10 tenths; all other values are in ¢
MY 0 1 2 3 4 5 6 7 8 9 10 p(.1)
0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 -1 0 0 0 0 0 0 0 0 0 -1
2 1 =2 2 -1 1 1 0 0 0 0 0 -1
3 -1 1 3 -1 -1 0 -1 0 0 0 0 1
4 -1 -2 -1 0 1 0 0 0 1 0 0 1
5 0 0 0 1 =2 0 0 0 1 0 0 -
6 0 0 0 0 0 1 0 1 0 0 0 1
7 0 0 0 0 0 -1 0 =3 1 1 0 -2
2] 0 0 0 0 0 1 1 -3 =2 2 -1 -3
9 ) 0 0 0 0 0 0o -1 2 -1 1 2
10 0 0 0 0 §] 0 0 O 0 1 -1 0




similarly, we found excellent agreement between observed and theo-

retical trequencies for the other values of N tested: 5, 20, 30. Indeed,
the agreement was even better for the larger values of N. Consequently,
we conclude without reservation that random point samples taken within

cloud fields do follow the binomial distribution.
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APPENDIX C

ESTIMATING THE INDEPENDENCE FRACTION

If the cloud sensor is sampled at 1 Hz, a pass across the target
area produces more than a thousand points at intervals of less than
50 meters. How good a predictor of the arecal cloud cover is the cloud
fraction of these points? As outlined in Appendix B, this guestion
could be readily answered in terms of the binomial distribution if the
points were independent, but samples so closely spaced are highly
correlated. This interdependence inflates the variance of the point
fraction and reduces the accuracy of the pass mean cloudiness as an
index of area cloud cover. In terms of this variance, the pass behaves
as though composed of some smaller number of independent points. Using
the procedure described below, for each of the 82 basic cloud fields
we evaluated this reduced number, N', and the "Independence Fraction,”
IF, defined as N'/N where N is the actual number of points in the
sample.

For each case the variance, 0;, of the half-row cloud fraction
was directly evaluated for the 100x100 km area. On the average, these
fractions were based on 62 points separated by .82 km, and “ﬁ was
based on 166 values.

Since the point vilue "3 either 0 or 1, the mean and mean square
of any collective of points are identical. Consequently, considering
the 10,000-plus points in the 100x100 km cloud field as the entire
population, their variance is NA(1-NA) where NA is the cloud fraction
for the whole area which is, of course, the population mean. It is
known that the variance, 02

Nlr
N' independent samples is 1/N' times the point variance. We now ask

of the mean of any subset consisting of

in each case: what value of N' yields the same variance as that ob-
served in the half-rows? This generates the following formulation for

the Independence Fraction:

NA (1-NA
IF = N'/N = Al “El. (C~1)
N x ON
Using the half-rows and ty. (C-1), we cvdatuated Il tor each of

the 82 cases. The average value of 1F was 0.090 with a standard

deviation of 0.054. 1In other words, in terms of their variance, the




half-row cloud fractions behaved as though based on fewer than 6 points
(.090 x 62 = 5.8).

An analogous concept is that of "Independence Unit of Length," IU,

which is the average separation of the hypothetical N independent sam-

ples. Since the half-rows are 50 km long in all of our cases, IU =

50/N' km. For all 82 cases the average of IU is 12.33 km with a stan-
dard deviation of 6.7 km.

Normally, the procedure above cannot be used in practice for want
of a sufficient number of passes from which to comjute the variance of
the pass mean. Hence we derived and tested several formulations for

approximating IF from single-pass data. All of these entailed evalu-

ating autocorrelation functions, and all resulted in values of IF that
were, on average, larger than the directly derived values discussed
above.

Since several of these approximations of IF assume that the se-

guence of samples forms a Markov chain, we tested this assumption by
evaluating the "Markov multiplier" for lags 2-6. The data used were
autocorrelations for £ = 1-6, based on entire rows, which average 124
points in length. For each lag the autocorrelation coefficient was

averaged for the approximately 83 rows in each case. The Markov

multiplier is defined as MQ = pg/plg where £ is the lag. These mul-
tiples were then averaged over the 82 cases. The results are plotted
in Figure C-1., For a Markov sequence, MQ = 1 for all values of .
Figure C-1 shows that in our cloud samples, the autocorrelation func-

tion decays more slowly than Markovian.
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Figure C-1.

Average Markov Multiple as a Function of lLag.
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APPENDIX D

SCME REFLECTIONS ON HOMOGENEITY

The contract Statement of Work invited us, first, to work the over-
all problem assuming horizontal homogeneity of the cloud field and, then,
to vonsider and evaludate the eftfects of non-homogeneity. As noted in
the overview, we iound it from the outset unnecessary to limit our
purview to homogeneous cloud fields. The theoretical approach made no
stipulation about the cloud field, only that the sampling points be ran-
domly deployed. The experimental approach was based on cloud fields as
nature served them up. Nevertheless, we have given some thought to the
pleasures of sampling a homogeneous field.

What is homogeneity? The Statement of Work gives no clue. As a
realization of a horizontally homogeneous cloud field, one might well
visualize a field of fair-weather cumulus, of size and spacing that are
variable but not too much so, and without any mesoscale structure. Any
sampling pass made through such a field — provided that it is sufficiently
long relative to the "scale size" of the field — should, in a statistical
sensc, be equivalent to any other pass. The most primitive statistic is
the mean cloudiness along the path. Thus, we are led to the definition
that a cloud field is homogeneous if and only if all sampling passes of
sufficient length yield the same value of cloud fraction. Under such con-
ditions, the sampling problem is trivial. A single horizontal pass of
sufficient length yields a flawless estimate of cloud fraction for the
area,

While all horizontally homogeneous cloud fields are, thus, egually
easy to sample, it does not follow that all inhomogeneous fields are equally
difficult to sample. There is one, not-uncommon, situation that is partic-
ularly troublesome. The fiecld we describe is the one we call the "cloud
ltont" field, which is shown in Figure D-1. Given an area of interest,
which we take to be a4 syuare, we break it into exactly two pieces, one
overcast and one clear. For further simplification, we assume that each
of the two pieces is a rectangle, the "cloud front" being the line between

them,
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Overcast 4%2;
Cloud Front —

\‘_.___ Length L

Fiqure D-1. Geometry of the Cloud Front Sample.

We now perform straight-line sampling of this cloud ficld. We shall

assume that:

(1) the square is of length 2;
(2} the sample line of fixed length 1, (< 2) is centered in
the square, and takes no angular preference;
(3) without loss of generality, the areal cloud cover NA is
2 k.
Let the fraction of our straight-line sample that is in cloud be Nl..
Some consideration shows that in all cases NA < NL.! (If NA < Y4 then
NA 2 NL always.) The question to be answered is this: with all arcal
cloud covers NA being equally likely, find the probability P(.1) that NI,
is within .] of NA,.

A short calculation shows that

_ ' -1 2NA-1
rro(fva-nt] < LU | NAy = 2 cos (minf1, Tyt by o-D
We can thus write
P(.1) :fl’r('NA - NL|<. U{NA) d(NA), and
2 1 -1 , 2x~1 .
p(.1) = Aﬂ—J' cos”  (min{l, T(-{-_.M} ) dx. (D-2)
1,
?




Woe expect that as 1oincrcases trom o to 2, Pool) jnercases as well,
We have evaluated bg. (D=2) tor o succession of npath lengths 1., obtain-
ing the graph shown in Figure D-2.

The "cloud front" field is probably the most extreme example of an
inhomogeneous field; yet it certainly occurs with no small probability.
It such a field is considered likely on a given day, Figure D-2 shows
that even with a straight line pass equal in length to the scale of the
region in question (t, = 2), the probability of obtaining an accurate
sample is just over 50%. We note finally that if instead of sampling
along a straight line an equal-area point sample .s taken, the result-
ing P(.1) is larger and is equal to 60% for the 9-point sample, 80% for

the 16-point sample.
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APFENDI X K

i A NOVEL METHOD FOR EVALUATING THE ONE-LAG AUTOCORRELATION

In view of the simple, dichotomous nature of cloud observations
it is possible to derive the one-lag autocorrelation in an extremely

vinple torm; namely,
pl =1 - g/nNL(1 - NL) (E-1)

where g is the number of separate cloud groups in the series of obser-
vations of zeros (clear) and ones (cloud). Therefore g is the number
of discrete strings of ones. The remaining terms have their usual
meaning: n is the total number of observations in the series and NL

is the fraction which are ones,

Eq. (E-1) can be derived by means of two separate approaches.
One makes use of probability concepts and the other consists essentially
of direct substitution into the defining expression for the one-lag
autocorrelation. Both approaches will be illustrated since they each
otter somewhat different insights into the nature or Eqg. (E-1). ,
We have a series of uniformly spaced observations along a straight,
horizontal line whose elements consist of zero (clear) or one (cloud).
Let P(Oll) be the conditional probability of a zero given a one
as the antecedent observation. Let P(lll) be the conditional probabil-
ity of a one given a one as the antecedent observation. Then it is i
apparent that
P(1|1) =1 - p(O]|1), (E-2)

P(l!l) times the number of ones in the series is merely the sum

of the one-lagged products. That is,
n NL P(1]1) = > Yin (E-3)
. .th .
where yi is the i observation. Thus,

N - g . 9
NL PO =yl (E-4)

where the operation ( ) indicates an average over the domain.

From the definition of the one-lag autocorrelation, pl,




Prs Yiag = Y070, o) (F=5)
I 71+t
2 Z . .
where oy = 0O = 0 1s the variance of the set of observation:,
i Yitl Y
L e 2 -2 2 <2 -2
bt = = - -
we obtain YY) oloy +y N (y y )ty
_ o =2 =2 2 2
R B A2 A B R A SN AR 1 R B (T
Therefore, from Eq. (E-4)
P(1l1) = (1 - NL)P, # NL = 0 + NL (L -p).  (5-6)
However, P(O]l) may be expressed as
Pol1) = X f(x) / ¥ xf(x) (5-7)
X X

where f(x) is the frequency of a string of x ones. Therefore 3 fix)
X

is the number of separate cloud groups (g), and Y xt(x) = n N!.

The latter quantity is of course the total number of ones in the series

of observations. Thus we have,
p(0|1) = g/n NL (E-8)
but from Egs. (E-2) and (E-6) we have

pof1) = 1 - Py = NL(1 - 0)) = (1 -p)) (1-NL).
Therefore, we have
oy = 1 - g/n NL(1 - N1). (=1}
The above expression for the one-lag autocorrelation can be derived

directly from the standard definition of p Eqg. (F=5)., I{ we are care-

l ’
ful to define the domain of the operator ( ) so as to account tfor ond

effects, then the domain of i in kq. (E=5) is i = 1, 2, ..., n-1,

In terms of guantities which have already been defined,




|
|
|

iYin (nNL, = g)/n (Lo=4j
y. =y = NL o
i Y (E-10)
- 2
2 2 2 — 2
o ~ 0 Y- Y = NL - (NL) . (E~11)
Yiv1 Y3

substituting Eq. (E-9), (%-10) and (E-11) into Egq. (E-5) we obtain

. (E=1) directly, *

o

py = FnNL -g9) /n- (NL)Z] / [NL - (NL)2]== 1 - g/nNL (1 - NL).

In Fgs. (E-9), (E-10), and (F-1l) the expressions are indicated as
approximate. The approximation arises because the domain of the ( ) ?
operator is i =1, 2, ..., n-1, whereas in Lg. (E-9) we have divided by
n. Similarly, in Egs. (E-10) and (E-11) NL is the cloud fraction for

the entire series of n observations, whereas yi and yi+l

over only (n-1) observations. The approximation however is certainly

are averages

)
very good for all but extremely short series of observations.
Therefore, in any series, where the elements may be expressed as
zeros or ones, the simple relation for the one-lag autocorrelation,

Eq. (E-1), may find useful application.




APPENDIX I

ADDITIONAL THEORETICAL SAMPLING DISTRIBUTIONS

Here we present some simple sampling models examined during the
course of this contract. These models have assisted our understanding
and may possibly be of value in future related studies.

Because many atmospheric processes are known to be Markovian in
nature we early on made a simple Markov model and studied its character-
istics. While the empirical data we later collected through McIhAX
appear to be samples of a sub-Markovian process, nevertheless the
Markov model is a reasonable one and does provide insight. We proceced
to outline its structure.

Let{Xn}, n=1, 2, 3, ..., represent the sequence of zeros and ones
returned by a straight line pass of the APV. If the areal cloud frac-
tion is NA then for any i the probability that Xi = 1 is NA and the
probability that Xi is 0 is 1 -~ NA. We wish to introduce the notion of
persistence into our model. Assume that the first N values of the se-
quence are known. We model the conditional probabilities of xn as

+1
follows, introducing persistence through the parameter &, with

0 asl:
Pro(x ., =1 | X, = 1) = o+ (1-0)NA
Pro(X ., =0 | Xy =1) = (1-a) (1-NA) (F-1)
Pro(Xg,, =1 [ Xy = 0) = (1-o)NA
Pr (X ,, =0 | X = 0) =a+ (1-0) (1-NA).

. t
It is possible to think of sequences whose (N+1)§— values are
dependent upon all of the valuesfxn}, n=1,2, ..., N. The fact that

the probability law for X in our model Eq. (F-1) depends only on the

N+1
last value XN makes our process Markovian. It should be clear that once
the value for X1 is yiven, Eq. (I'-1) inductively determines the probabil-

ity law for Xz, X3, X4, ... To start the process it 1is natural to take

Pr (X1 = 1) = NA and Pr (X1 =0) =1 ~ NA.

protven




We have now completely specified our (Markovian) model Eq. (F-1).

lt is not hard to show that for any value of N, the expected value of
Xy 15 NAL Purther, the one-lag autocorrelation of the process is .
Because the one-lag autocorrelation is called p in earlier sections

we shall here make the identification u = p. It is not hard to see
that if @ = O then the XN'S are completely independent. As ( increases
toward 1 the effect of XN on XN+l increases, until in the extreme case
a = 1 all of the XN‘s are equal to the value of xl. It is for this
reason that o is considered to be a measure of persistence.

In operational practice a sample sequence of zeros and ones is
provided by the APV, and we wish to draw inferences from it. Before we
can do so, however, we need to know more about the model Eq. (F-1); in
particular we ask first: given that we know both NA and p (=0) and
that we make a total of N observations, what is the probability that
cxactly k of our observations are equal to one? Let us write this

probability as Ns(k; NA,p). We have written a program called PROB

which calculates S. 1It is worthwhile to note that

N . - -
Z% Ns(k, NA, p) =1 (F-2) '
Sk va, 0) = (ﬁ) Na® (1-n2) VK (F-3)
Eg. (F-3) is a statement of the fact that in the limiting case £ = O !

our model reduces to a sequence of N independent trials of the bi-
nomiul distribution with parameter NA.

For the general case p ¥ 0 it is clear that persistence makes our
sample of N observations dependent on one another. We ask as in pre-
vious sections: find an appropriate measure of the amount of independ-
ent information contained in any sample sequence. We make this cuestion
more explicit: wusing the chi-square test, find the value of N' so that

yiS{ki NA, 0) best fits S(k; NA, p).

The following table gives the results for the case N = 100; for

each (NA, p) pair, the entry is the value of N':




:
¥

TABLE F-1. N' AS A FUNCTION OF NA AND p (N- 100).

NA .1 .2 .3 .4 .5 .6 .7 .8 .9
o
.1
.2 >50 >50 >50
.3
.4 44 43 43 43 43 43 43 43% 44
.5 35 34 34 34 34 34 34 34 35
.6 25 26 25 25 25 25 26 26 25
.7 15 18 18 18 18 18 18 18 15
.8 14 10 11 12 12 12 12 10 14
.9 17% 8 5 4 4 4 4 8 17,

We now turn the problem around; instead of a probability law being
given, a sample of N observations is considered given. 1In addition, the
climatology function CP(%), 2 = 0, 1, 2,
L/

10 is assumed to be given. From

..., 10 = the climatological

probability of the cloud cover being

the sample we can obtain an N' in various ways, including, for example,

using the above table. As in Appendix B, Bayes' Theorem then provides

the conditional probabilities Pr (NAlNL) = the probability that the actual

cloud cover is NA given the observed cloud traction NL. The computey

program NPRIME performs this calculation for a given climatoloay, N',

and observation, NL. From this output confidence levels may be obtained.
There is another (related) way to use Bayes' Theorem without calcu-

lating an N'. Given a sample of N total observations, calculate the ob-

served cloud fraction NL and RHOSAM, the sample one-lag autocorrelation,

Just as Bayes' Theorem can be used to work from N,S(k; NA, 0) %, NA

=0, .1, ..., 1.0 together with a climatology, it can also be used to

work fronl{NS(k; NA, RHOSAM)},NA =0, .1, ..., 1.0 and a climatoloqgy,

calculating as above Pr (NA[NL). Program DPROR performs the calculation.
The final section of this appendix addresses the question of how to

proceed to obtain confidence levels from a sample sequence when no ofim-

atology is available. One method is to apply Gauss’ md§igq@t}jkp}ippnq

estimator to estimate unknown paramvtors.4

4, Larson, H., 1969: Introduction to Probability ‘Theory and Stalistical

Inference. John Wiley & Sons, pp 253,

PO




Assume that we are given a sample sequence {Xn} of N observations.
Proceeding as before, we can reduce to N’ independent Bernoulli trials
in a variety of ways. If N' is large enough, it can be shown that if

we want to find P1 and P2 such that

Pr (P
r | 1

IA

NA < Pz) = 1 - B, where NA is the (F-4)

{unknown) cloud cover, then

P, = NL - —/‘_— /NL (I - NL) and (F-5)
/N

o} - -

l2 NL + VNL (1 NL), where 21-8/2 (F-6)

/N

is the 100 (1-8/2) percentile of the standard (mean O, variance 1) nor-
mal distribution function and NL. is the observed cloud fraction of the i
given sample. '

Our last technique combines the notion of a Markov process with
Gauss' maximum likelihood estimator.

Assume that we are given a sample{ Xn }of N observations of some
unknown Markov process. Can we find that Markov process which is most
likely to have generated our sample set of observations? We have done
so, stating the result below.

Given Xn , let

C # of times a 0 follows a O.

1]

00 ,
COl = # of times a 1 follows a O. '
(F=7)
CLO = # of times a O follows a 1. o
Cll = # of times a 1 follows a 1. 'i
C (o ‘
[¢]
Let A = GLQ and B = E*l' (F-8)
11 00
|
NDefine Cl, most likely NA,
RHOI, = most likely . (F-9)
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A calculation shows that

1 + A

Cl, = B =
! B Ay B + 2AB ' « )

1 - AR .
RHOL = 91 + 5y (=1

Given the sample {Xn }of N observations, one can write in
analytical form the probanility function P = P(NA,p) that is the prob-
ability of obtaining the sequence {Xn }from the Markov process (NA,p).
One then finds through elementary calculus that P is maximized at
(CL, RHOL), yielding the above result. It is not unreasonable to expect
that levels of confidence for this result can be obtained from the func-
tion P. We have thus outlined a scheme whereby under the Markov assump-
tion and with no climatology one can pass from a line sample to the most
likely generating Markov process. Work that might be done in the future

includes finding the confidence interval for this result.
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